Modifying a Sparse Cholesky Factorization
نویسندگان
چکیده
Given a sparse symmetric positive definite matrix AAT and an associated sparse Cholesky factorization LDLT or LLT, we develop sparse techniques for obtaining the new factorization associated with either adding a column to A or deleting a column from A. Our techniques are based on an analysis and manipulation of the underlying graph structure and on ideas of Gill et al. [Math. Comp., 28 (1974), pp. 505–535] for modifying a dense Cholesky factorization. We show that our methods extend to the general case where an arbitrary sparse symmetric positive definite matrix is modified. Our methods are optimal in the sense that they take time proportional to the number of nonzero entries in L and D that change.
منابع مشابه
Computational Issues for a New Class of Preconditioners
In this paper we consider solving a sequence of weighted linear least squares problems where the only changes from one problem to the next are the weights and the right hand side (or data). We alternate between iterative and direct methods to solve the normal equations for the least squares problems. The direct method is the Cholesky factorization. For the iterative method we discuss a class of...
متن کاملIncomplete Cholesky Factorization with Sparsity Pattern Modi cation
This paper proposes, analyzes, and numerically tests methods to assure the existence of incomplete Cholesky (IC) factorization preconditioners, based solely on the target sparsity pattern for the triangular factor R. If the sparsity pattern has a simple property (called property C+), then the IC factor exists in exact arithmetic. Two algorithms for modifying the target sparsity pattern to have ...
متن کاملAdvances in Sparse Hypermatrix Cholesky Factorization
We present our work on the sparse Cholesky factorization using a hypermatrix data structure. First, we provide some background on the sparse Cholesky factorization and explain the hypermatrix data structure. Next, we present the matrix test suite used. Afterwards, we present the techniques we have developed in pursuit of performance improvements for the sparse hypermatrix Cholesky factorization...
متن کاملNORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Specifying Gaussian Markov Random Fields with Incomplete Orthogonal Factorization using Givens Rotations
In this paper an approach for finding a sparse incomplete Cholesky factor through an incomplete orthogonal factorization with Givens rotations is discussed and applied to Gaussian Markov random fields (GMRFs). The incomplete Cholesky factor obtained from the incomplete orthogonal factorization is usually sparser than the commonly used Cholesky factor obtained through the standard Cholesky facto...
متن کاملScalable Parallel Algorithms for Solving Sparse Systems of Linear Equations∗
We have developed a highly parallel sparse Cholesky factorization algorithm that substantially improves the state of the art in parallel direct solution of sparse linear systems—both in terms of scalability and overall performance. It is a well known fact that dense matrix factorization scales well and can be implemented efficiently on parallel computers. However, it had been a challenge to dev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Matrix Analysis Applications
دوره 20 شماره
صفحات -
تاریخ انتشار 1999